Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Europium(II) oxyiodide

Wuping Liao and Richard Dronskowski*

Institut für Anorganische Chemie, RWTH Aachen, Professor-Pirlet-Straße 1, 52056
Aachen, Germany
Correspondence e-mail: drons@HAL9000.ac.rwth-aachen.de

Received 24 November 2003
Accepted 12 December 2003
Online 31 January 2004

Yellow single crystals of $\mathrm{Eu}_{4} \mathrm{OI}_{6}$ were grown from fluxes in Ta ampoules and structurally characterized by X-ray diffraction. $\mathrm{Eu}_{4} \mathrm{OI}_{6}$ crystallizes in a hexagonal system and is isotypic with the corresponding chloride and bromide compounds. The O atom and one Eu atom lie on sites with $3 m$ symmetry; the other Eu atom and the two unique I atoms are at sites with m symmetry. The structure is characterized by O-centered tetrahedra of divalent europium cations $[\mathrm{Eu}-\mathrm{O}=2.391$ (15) and 2.416 (5) \AA, and mean $\mathrm{Eu}-\mathrm{Eu}=3.94 \AA$] and hexagonal channels along [001] filled with iodide anions.

Comment

Europium oxyhalides of general formula $\mathrm{Eu}_{4} \mathrm{O} X_{6}(X=\mathrm{Cl}$ and Br) were first referred to by Tanguy et al. (1970), who indexed their X-ray patterns on the basis of the pattern of $\mathrm{Ba}_{4} \mathrm{OCl}_{6}$. The formation of single crystals has been observed as a byproduct from oxygen-containing melts (Meyer \& Schleid, 1987), and a systematic route based on reaction mixtures incorporating $\mathrm{Eu} X_{3}(X=\mathrm{Cl}$ and Br$), \mathrm{Eu}_{2} \mathrm{O}_{3}$ and lithium succeeded in growing pale-yellow single crystals of good quality (Schleid \& Meyer, 1987a). The synthesis and structure determination of the iodide phase $\mathrm{Eu}_{4} \mathrm{OI}_{6}$, however, have not yet been reported. The present contribution is part of a project targeted at synthesizing rare-earth cyanamides/carbodiimides, during which, by accident, we found a simple way to grow single crystals of $\mathrm{Eu}_{4} \mathrm{O} X_{6}(X=\mathrm{Cl}, \mathrm{Br}$ and I).
$\mathrm{Eu}_{4} \mathrm{OI}_{6}$ crystallizes in a hexagonal system in space group $P 6_{3} m c$ and is isotypic with $\mathrm{Eu}_{4} \mathrm{OCl}_{6}$ and $\mathrm{Eu}_{4} \mathrm{OBr}_{6}$. The most important structural feature of $\mathrm{Eu}_{4} \mathrm{OI}_{6}$ is the tetrahedral $\left[\mathrm{Eu}_{4} \mathrm{O}\right]^{6+}$ unit (Fig. 1) containing divalent europium. The O atom resides at the center of the tetrahedron, the $\mathrm{Eu}-\mathrm{O}$ distances being similar [Eu1-O $=2.391$ (15) \AA and $\mathrm{Eu} 2-$ $\mathrm{O}=2.416$ (5) \AA; Table 1]. The $\mathrm{Eu}-\mathrm{Eu}$ distances are $3.8900(16)(\mathrm{Eu} 1-\mathrm{Eu} 2)$ and 3.9796 (14) $\AA(\mathrm{Eu} 2-\mathrm{Eu} 2)$, and the tetrahedral angles are very close to their ideal values, namely 108.0 (3) ${ }^{\circ}$ for Eu1-O-Eu2 and 110.9 (3) ${ }^{\circ}$ for Eu2-$\mathrm{O}-\mathrm{Eu} 2$. The average $\mathrm{Eu}-\mathrm{O}$ [2.41 (1) \AA] and $\mathrm{Eu}-\mathrm{Eu}$ [3.92 (2) \AA] distances in $\mathrm{Eu}_{4} \mathrm{OI}_{6}$ are only slightly larger than
those in $\mathrm{Eu}_{4} \mathrm{OCl}_{6}$ (2.36 and $3.86 \AA$, respectively) and $\mathrm{Eu}_{4} \mathrm{OBr}_{6}$ (2.39 and $3.90 \AA$, respectively).

The Eu coordination is augmented by neighboring iodide anions, with interatomic distances ranging from 3.3891 (16) to 3.5794 (12) \AA (Eu1, six bonds) and from 3.2905 (15) to 3.5458 (11) \AA (Eu2, seven bonds). On the basis of the tabulated bond-valence parameter for the $\mathrm{Eu}^{\mathrm{II}}-\mathrm{O}\left(r_{0}=2.147 \AA\right.$; Brese \& O'Keeffe, 1991) and Eu ${ }^{\text {II }}-\mathrm{I}$ bonds $\left(r_{0}=2.869 \AA\right.$; generated from the crystal structure of EuI_{2}; Sanchez et al., 1985), the empirical valences of atoms Eu1 and Eu2 sum to 1.69 and 2.11 , respectively. Even including the three very long Eu1-O distances ($3.96 \AA$) in the calculation, the Eu1 valence sum does not fully match the divalent state. We note that a similar effect is missing in $\mathrm{Ba}_{4} \mathrm{OCl}_{6}$, thereby indicating the possibility of weak metal-metal bonding in the rare-earth tetrahedron through residual electron density. In fact, the $\mathrm{Eu}^{\mathrm{II}}-\mathrm{Eu}^{\mathrm{II}}$ distances in $\mathrm{Eu}_{4} \mathrm{OI}_{6}$ are almost identical to those in elemental Eu ($3.99 \AA$ A; Sutton, 1965), and similar effects of metal-metal bonding in less than fully oxidized rare-earth metal compounds have been described in corresponding quantum-chemical investigations of extended solids (Landrum et al., 1999).

When projected along [001] (Fig. 2), the crystal structure of $\mathrm{Eu}_{4} \mathrm{OI}_{6}$ exhibits one-dimensional hexagonal channels of approximate diameter $4.86 \AA$ (atom-to-atom distance), which can be compared with the corresponding channel diameters in both $\mathrm{Eu}_{4} \mathrm{OBr}_{6}(4.70 \AA)$ and $\mathrm{Eu}_{4} \mathrm{OCl}_{6}(4.62 \AA)$. Analogous

Figure 1
The tetrahedral $\left[\mathrm{Eu}_{4} \mathrm{O}\right]^{6+}$ unit in $\mathrm{Eu}_{4} \mathrm{OI}_{6}$, with displacement ellipsoids drawn at the 50% probability level. The symmetry codes are as in Table 2, with the addition of (ix) $1-x+y,-x, z$.

Figure 2
A projection of the crystal structure of $\mathrm{Eu}_{4} \mathrm{OI}_{6}$ along [001].
channels are also observed in related rare-earth oxyhalides, such as $\mathrm{Sm}_{4} \mathrm{OCl}_{6}[4.61 \AA$; calculated with the data given by Schleid \& Meyer (1987b)] and $\mathrm{Yb}_{4} \mathrm{OCl}_{6}$ ($4.37 \AA$; Schleid \& Meyer, 1987c). It is not yet known whether these channels can provide enough empty space for the inclusion of other chemical species. To the best of our knowledge, hexagonal channels filled with only halide anions are exclusively found in the rare-earth oxyhalides. For related oxoselenate or phosphate compounds, similar hexagonal channels have been described in combination with electron 'lone pairs' on the Se and P atoms (Morris et al., 1994; Wontcheu \& Schleid, 2003). In $\mathrm{Tb}_{3} \mathrm{O}_{2} \mathrm{Cl}\left[\mathrm{SeO}_{3}\right]_{2}$ (Wontcheu \& Schleid, 2002), two chloride anions in diametrically opposed positions around the hexagon are involved in channel formation.

Experimental

Because of the extraordinary affinity of europium towards oxygen, all chemical manipulations were performed in a glove-box under dry argon, with oxygen and moisture levels below 1 p.p.m. The accidental synthesis of $\mathrm{Eu}_{4} \mathrm{OI}_{6}$ resulted from a $1: 1$ mixture of EuI_{2} (Aldrich, 99.9%) and $\mathrm{Li}_{2}(\mathrm{NCN})$ [synthesized according to Liu (2002)], which was placed in a tantalum ampoule that was sealed with an arc welder and jacketed with quartz, both under argon. The sample was heated to 1073 K for two days and then cooled slowly ($6 \mathrm{~K} \mathrm{~min}^{-1}$) to room temperature. As a result of slight oxygen contamination (probably as $\mathrm{LiOH})$ of the X-ray pure $\mathrm{Li}_{2}(\mathrm{NCN})$, yellow prisms of $\mathrm{Eu}_{4} \mathrm{OI}_{6}$ $(\sim 3 \times 0.5 \times 0.5 \mathrm{~mm}$ in size) were obtained. The phase seemingly acts as a getter for traces of oxygen, in agreement with independent observations (Meyer \& Schleid, 1987). The title compound can also be synthesized by deliberately introducing oxygen-containing educts (e.g. $\mathrm{Eu}_{2} \mathrm{O}_{3}$), and crystals of $\mathrm{Eu}_{4} \mathrm{OCl}_{6}$ and $\mathrm{Eu}_{4} \mathrm{OBr}_{6}$ can be grown under identical conditions. The halide/cyanamide melts seemingly catalyze the growth of single crystals, which are difficult to obtain otherwise. Because of their sensitivity to oxygen and moisture, the single crystals were mounted in glass capillaries inside a glove-box for the X-ray measurements.

Crystal data

$\mathrm{Eu}_{4} \mathrm{OI}_{6}$
$M_{r}=1385.24$
Hexagonal, $P 6_{3} m c$
$a=10.404$ (2) \AA
$c=7.996$ (3) \AA
$V=749.5(3) \AA^{3}$
$Z=2$
$D_{x}=6.138 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo $K \alpha$ radiation
> Cell parameters from 9730 reflections
> $\theta=2.3-28.3^{\circ}$
> $\mu=28.82 \mathrm{~mm}^{-1}$
> $T=293$ (2) K
> Prism, yellow
> $0.15 \times 0.10 \times 0.09 \mathrm{~mm}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

Eu1-O	2.391 (15)	Eu2-I2 ${ }^{\text {iv }}$	3.3757 (12)
Eu1-I2 ${ }^{\text {i }}$	3.3891 (16)	Eu2-I1 ${ }^{\text {v }}$	3.4032 (9)
Eu1-I1 ${ }^{\text {ii }}$	3.5794 (12)	Eu2-I2 ${ }^{\text {vi }}$	3.5458 (11)
Eu1-Eu2 ${ }^{\text {ii }}$	3.8900 (16)	Eu2-Eu1 ${ }^{\text {iii }}$	3.8900 (16)
Eu2-O ${ }^{\text {iii }}$	2.416 (5)	Eu2-Eu2 ${ }^{\text {vii }}$	3.9796 (14)
Eu2-I1	3.2905 (15)		
Eu2 ${ }^{\text {ii }}-\mathrm{Eu} 1-\mathrm{Eu} 2{ }^{\text {i }}$	61.53 (3)	Eu1-O-Eu2 ${ }^{\text {i }}$	108.0 (3)
Eu1 ${ }^{\text {iii }}$-Eu2-Eu2 ${ }^{\text {vii }}$	59.235 (15)	Eu2 ${ }^{\text {iii }}-\mathrm{O}-\mathrm{Eu} 2{ }^{\text {i }}$	110.9 (3)

Symmetry codes: (i) $-y, x-y, z$; (ii) $x, 1+y, z$; (iii) $x, y-1, z$; (iv) $-y, x-y-1, z-1$; (v) $y,-x+y, z-\frac{1}{2}$; (vi) $1+y, 1-x+y, z-\frac{1}{2}$; (vii) $-y, x-y-1, z$.

Data collection

Bruker SMART APEX CCD

diffractometer
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.479, T_{\text {max }}=1.0$
9730 measured reflections
727 independent reflections
704 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-13 \rightarrow 13$
$k=-13 \rightarrow 13$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.067$
$S=1.09$
727 reflections
24 parameters
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0325 P)^{2}\right. \\ & +11.6 P]\end{aligned}$
$+11.61 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.86 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.73$ e \AA^{-3}
Absolute structure: Flack (1983),
336 Friedel pairs
Flack parameter $=0.07(4)$

The refinement was started using the structure of the isotypic chloride phase, with anisotropic displacement parameters for Eu and I atoms and an isotropic displacement parameter for the O atom.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

It is a pleasure to thank the Fonds der Chemischen Industrie (Frankfurt) for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC1033). Services for accessing these data are described at the back of the journal.

References

Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Landrum, G. A., Dronskowski, R., Niewa, R. \& DiSalvo, F. J. (1999). Chem. Eur. J. 5, 515-522.
Liu, X. (2002). Dissertation, RWTH, Aachen, Germany.
Meyer, G. \& Schleid, T. (1987). Inorg. Chem. 26, 217-218.
Morris, R. E., Attfield, M. P. \& Cheetham, A. K. (1994). Acta Cryst. C50, 473476.

Sanchez, J. P., Friedt, J. M., Bärnighausen, H. \& van Duyneveldt, A. J. (1985). Inorg. Chem. 24, 408-415.
Schleid, T. \& Meyer, G. (1987a). Z. Anorg. Allg. Chem. 554, 118-122.
Schleid, T. \& Meyer, G. (1987b). Z. Anorg. Allg. Chem. 553, 231-238.
Schleid, T. \& Meyer, G. (1987c). J. Less Common Met. 127, 161-166.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sutton, L. E. (1965). In Table of Interatomic Distances and Configuration in Molecules and Ions, Suppl. 1956-1959, Special publication No. 18. London: Chemical Society.
Tanguy, B., Frit, B., Levasseur, A., Olazcuaga, R. \& Fouassier, C. (1970). C. R. Acad. Sci. Ser. C, 270, 1239.
Wontcheu, J. \& Schleid, T. (2002). Z. Kristallogr. Suppl. 19, 138.
Wontcheu, J. \& Schleid, T. (2003). Z. Anorg. Allg. Chem. 629, 1463-1465.

